BASICITIES OF (HALOGENOALKYL)SUBSTITUTED SILICON COMPOUNDS. A QUANTUM CHEMICAL STUDY*

R.PONEC, L.DEJMEK and V.CHVALOVSKÝ

Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6 - Suchdol

Received March 18th, 1976

Enthalpies of protonation equilibria, ΔH , of the compounds $H_3M(CH_2)_nX$ (M = C, Si; X = F, Cl; n = 1-3) were calculated for partially optimized geometries by CNDO/2 method neglecting silicon *d*-orbitals. The calculated values of ΔH exhibit the same trends as the experimentally determined basicities and they are considerably affected by the conformation of the molecule.

In our previous work¹, the basicities of organosilicon amines and alcohols of the type $H_3Si(CH_2)_nX$ (X = NH₂, OH; n = 0.3) were studied in relation to the mechanism of the α -effect and to the problem of silicon *d*-orbital participation. The relative basicity of these compounds was measured by IR frequency shifts Δv_{OH} or Δv_{CD} observed in the formation of hydrogen bonds with phenol or deuteriochloroform employed as protondonors^{2,3}. Since such measurements were carried out in very diluted solutions in non-polar solvent (CCl₄), one can expect the order of Δv values to be comparable with the order of basicities measured in the gas phase. More recent experimental values Δv_{OH} of organosilicon halogeno derivatives of the type (CH₃)₃. Si(CH₂)_nX (X = F, Cl; n = 1-3) (ref.⁴) make an extension of our basicity studies to this series of compounds possible.

CALCULATIONS

The CNDO/2 calculations were carried out for idealized tetraheadral geometries without the inclusion of silicon *d*-orbitals. For economical reasons the enthalpies ΔH were calculated for silyl derivatives instead for trimethylsilyl derivatives. The Si---X bond lengths were taken from ref.⁵ and all the other interatomic distances from the work⁶, except for the H--F and H--Cl bond lengths which were taken to be 0.96 and 1.27 Å, resp.⁷ The geometry of β -functional derivatives was partially optimized with the respect to the rotation around the C--C bond. According to the CNDO/2 calculations the conformations with *anti*-periplanar arrangement of M--C and C---X bonds is the most stable one for the compounds of the type H₃M(CH₂)₂X (X = F, Cl; M = Si, C).

^{*} Part CLI in the series Organosilicon Compounds; Part CL: This Journal 12, 1540 (1977).

H H^{MM}C-X

In γ -functional derivatives *anti*-conformation of the C-C-C-X chain was preserved and the H₃M group was placed into the energetically most favourable staggered conformation. In some cases the optimum conformations calculated by the CNDO/2 method differ from those obtained by the *ab initio* method⁸ according to which the *syn*-clinal arrangement of C-C and C-F bonds is the most favourable in propyl fluoride. In regard to this finding, the protonation enthalpies ΔH were calculated for both conformations and the results compared with the experimental data.

Reaction enthalpies, ΔH , were calculated for the following reactions:

$$R-F + H^+ \rightarrow R-FH^+ \tag{A}$$

$$\mathbf{R} - \mathbf{Cl} + \mathbf{H}^+ \rightarrow \mathbf{R} - \mathbf{Cl} \mathbf{H}^+ \,. \tag{B}$$

These reactions characterize the basicity of the compounds in the gas phase. There are three modes of protonation of the molecular active center (Scheme 2). The most favourable is the protonation mode I.

and

SCHEME 2

Compound	$E(\mathbf{RX})$	$E(RXH^+)$	ΔH
₂H₅F	-1 245.940	-1 255-359	- 9.419
$_{3}H_{7}F^{a}$	-1482.500	-1492.094	- 9.594
C4H9F ^a	-1718·942	-1728.616	- 9.675
I ₃ SiCH ₂ F	-1 151·943	-1 161.775	-9.832
$I_3Si(CH_2)_2F^a$	-1388.703	-1 398·593	9.889
$H_3Si(CH_2)_3F^a$	$-1 625 \cdot 191$	-1 634.974	9.783
$C_3H_7F^b$	-1482.426	-1 491.916	- 9.491
C ₄ H ₉ F ^b	-1 718·845	-1 728.400	-9.555
$H_3Si(CH_2)_2F^b$	-1 388.686	-1 398.307	-9.622
I SI(CH) F ^b	-1 625.115	-1.634.772	-9.657

alculated Total I	Energies E (eV) and	Reaction Enthalpie	s ΔH (eV) for Reaction (A)
-------------------	---------------------	--------------------	------------------------------------

" In anti-periplanar conformation. b In syn-clinal conformation.

TABLE II

TABLE I

Calculated Total Energies E (eV) and Reaction Enthalpies ΔH (eV) for Reaction (B) without Inclusion of Silicon and Chlorine d-Orbitals

Compound	E(RX)	E(RXH ⁺)	ΔH	
$C_2H_5Cl \\ C_3H_7Cl^a \\ C_4H_9Cl^a$	928·020 1 164·572 1 401·018	- 936·060 - 1 172·796 - 1 409·324		
H_3SiCH_2Cl $H_3Si(CH_2)_2Cl^a$ $H_3Si(CH_2)_3Cl^a$ $C_2H_2Cl^b$	$ \begin{array}{r} - & 834 \cdot 167 \\ - & 1 & 070 \cdot 922 \\ - & 1 & 307 \cdot 270 \\ - & 1 & 164 \cdot 462 \\ \end{array} $	842·496 1 079·494 1 315·686 1 172·566	-8.329 -8.573 -8.415 -8.104	
$C_4H_9Cl^b$ $H_3Si(CH_2)_2Cl^b$ $H_3Si(CH_2)_3Cl^b$			-8.162 -8.234 -8.252	

^a In anti-periplanar conformation. ^b In syn-clinal conformation.

TABLE III

Compound	$E(\mathbf{RX})$	$E(RXH^+)$	ΔH
C ₂ H ₅ Cl	— 931·044	- 940.270	-9·226
C ₃ H ₇ Cl	-1 167.589	-1 177.027	- 9.438
C ₄ H ₉ Cl	-1404.036	-1 413-571	-9·535
H ₃ SiCH ₂ Cl	— 837·506	— 847·299	- 9.793
H ₃ Si(CH ₂) ₂ Cl	-1073.918	-1 083.741	-9.823
H ₃ Si(CH ₂) ₃ Cl	-1 310·288	-1 319.957	<i>—</i> 9·669

Calculated Total Energies E(eV) and Reaction Enthalpies ΔH (eV) for Reaction (B) with Inclusion of Chlorine d-Orbitals (anti-periplanar conformation)

DISCUSSION

It is known that the CNDO/2 method correctly reproduces the basicities of alkyl alcohols and amines in the gas phase.

Fig. 1

Dependence of Calculated Protonation Enthalpies ΔH on Experimental Values of Protonaffinities (gas phase in CH₃X and C₂H₅X Compounds

 $1 X = NH_2$; 2 X = OH; 3, 6 X = Cl with the inclusion of *d*-orbitals; 4, 7 X = Clwithout the inclusion of *d*-orbitals; 5, 8X = F). All the values of ΔH are negative.

Dependence of Calculated Protonation Enthalpies ΔH on *n* in H₃M(CH₂)_nF

1 M = C; 2 M = Si; *anti*-periplanar conformation of the chain. All the values of ΔH are negative. The dependence of the calculated ΔH values on the protonaffinity^{9,10} values is illustrated for methyl and ethyl alcohols, amines, and halogenoderivatives on Fig. 1. The fluoro derivatives fit the expected linear dependence equally well as the alcohols and amines. In the case of chloro derivatives larger deviations are observed. The agreement with the experimental results is better if the *d*-orbitals of chlorine are considered. One can, therefore, expect that the inclusion of the chlorine *d*-orbitals would allow a better description of the basicities even in the series of organosilicon derivatives H₃Si(CH₂)_nCl.

It is clear from Figs 2-6 that the calculated ΔH values of carbonfunctional organosilicon halogeno derivatives strongly depend on the conformation of the molecule. Only in *anti*-periplanar conformation of Si—C and C—X bonds the trend in ΔH values parallels that in Δv_{OH} values, and that even without the inclusion of the silicon *d*-orbitals. In *syn*-clinal conformations of these compounds the basicities of the β -functional derivatives are considerably lowered and, in the consequence, the order of basicities in isostructural series with the variable *n* is altered. Variation in the order of the calculated ΔH values with the changes in the conformation were already noted in the study of the basicity of organosilicon amines and alcohols. Fluoro derivatives of organosilicon compounds in which, similarly as in amines, the *anti*-

Dependence of Calculated Protonation Enthalpies ΔH on *n* in H₃M(CH₂)_nF \sharp^{α} 1 M = C; 2 M = Si; syn-clinal conformation of the chain. All the values of ΔH are negative.

Dependences of Protonation Enthalpies ΔH Calculated for $H_3M(CH_2)_nCI$ Compounds and of Experimental Values of Δv_{OH} (curve 3) in $(CH_3)_3Si(CH_2)_nCI$ Compounds on the Number *n*

1 M = C, 2 M = Si; anti-periplanar conformation n of the chain; d-orbitals neglected. All the values of ΔH are negative. -periplanar conformation of Si—C and C—X bonds is preferred according to the CNDO/2 calculations, exhibit the same trend of the basicities. Organosilicon alcohols in which *syn*-clinal conformation is preferred, show, in an agreement with the experimental results², a monotoneous decrease in the basicity when going from the α to the to the γ derivative.

The trend in the calculated basicities of organosilicon chloro derivatives agrees with that found experimentally $(\alpha < \gamma)$ only if the chlorine *d*-orbitals are included. If only *s* and *p* orbitals are considered the basicity of the β -functional derivative is correctly calculated as the largest but the order of basicities of α and γ functional derivatives is described incorrectly. The trends in the basicities of carbon derivatives are not sensitive to conformational changes.

The above facts obviously demonstrate that the variations in basicities of carbonfunctional organosilicon derivatives are due to intramolecular interactions of a different type than those occurring in the series of carbon analogues. Detailed elucidation of such interactions would require much deeper analysis of orbital interactions. Such calculations are now in preparation in our laboratory.

FIG. 5

Dependence of Calculated Protonation Enthalpies ΔH on Number *n* in Compounds $H_3M(CH_2)_nCl$

1 M = C, 2 M = Si; syn-clinal conformation of the chain; d-orbitals neglected. All the values of ΔH are negative.

FIG. 6

Dependences of Protonation Enthalpies ΔH Calculated for $H_3M(CH_2)_nCI$ Compounds and of Experimental Values of Δv_{OH} in $(CH_3)_3Si(CH_2)_nCI$ Compounds (curve 3) on Number *n*

1 M = C, 2 M = Si; *anti*-periplanar conformation of the chain, chlorine *d*-orbitals included. All the values of ΔH are negative.

REFERENCES

- 1. Ponec R., Chvalovský V.: This Journal 40, 2480 (1975).
- 2. Pola J., Bažant V., Chvalovský V.: This Journal 37, 3885 (1972).
- 3. Fialová V., Bažant V., Chvalovský V.: This Journal 38, 3837 (1973).
- 4. Jakoubková M., Papoušková Z., Chvalovský V.: This Journal 41, 2701 (1976).
- Sutton L.: Tables of Interatomic Distances, Supplement (Special publ. No 18). The Chemical Soc., London 1965.
- 6. Pople J. A., Beveridge D. L .: Approximate MO Theory. McGraw Hill, New York 1970.
- 7. Gillespie R. J.: Molecular Geometry. Van Nostrand, London 1972.
- 8. Radom L., Lathan W. A., Hehre W. J., Pople J. A.: J. Amer. Chem. Soc. 95, 693 (1973).
- 9. Beauchamp J. L., Holtz D., Woodgate S. D., Patt S. L.: J. Amer. Chem. Soc. 94, 2798 (1972).
- 10. Amagi C.: Bull. Soc. Chim. Fr. 1974, 869.

Translated by J. Schraml.